535/3 PHYSICS Paper 3 Jul./Aug. 2019 2 ¼ Hours

UTEB JOINT MOCK EXAMINATIONS, 2019 Uganda Certificate of Education PHYSICS Paper 3

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

- Answer Question **1** and **one** other question. You will **not** be allowed to start working with the apparatus for the first quarter of an hour.
- Marks are given mainly for a clear record of the observations actually made, for their suitability and accuracy, and for the use made of them.
- Candidates are reminded to record their observations as soon as they are made.
- Whenever possible, candidates should put their observations and calculations in a suitable table drawn in advance.
- An account of the method of carrying out the experiment is not required.
- Squared papers are provided.
- Mathematical tables, slide rules and silent non-programmable calculators may be used.

1. In this experiment you will determine the relative density of paraffin provided.

(30 marks)

- (a) Clamp the metre rule vertically.
- (b) Suspend the spring with a pointer on the clamp besides the metre rule.
- (c) Suspend a beaker from the spring using a thread as shown in the figure 1 below.

- (d) Record the initial position p_0 of the pointer on the metre rule.
- (e) Pour $50cm^3$ of water into the beaker and record the new position p_1 of the pointer.
- (f) Find the extension $y = p_1 p_0$ produced and record your results in a suitable table.
- (g) Repeat procedures (e) to (f) for $100cm^3$, $150cm^3$, $200cm^3$ and $250cm^3$ of water.
- (h) Remove the beaker, empty and dry it.
- (i) Repeat procedures (c) to (g) for 50cm³, 100cm³, 150cm³, 200cm³ and 250cm³ of paraffin.
- (j) Find the extension $x = p_2 p_0$ produced in each case in step (i) and record your results in a suitable table.
- (k) Plot a graph of y against x.
- (I) Determine the slope *s* of the graph.
- (m)Determine the relative density of paraffin given that:

Relative density of paraffin = $\frac{1}{s}$

- 2. In this experiment you will determine the refractive index, n, of the glass slab.
 - (a) Fix the plain sheet of paper provided onto the soft-board.
 - (b) Place the slab on the sheet of paper with its largest face facing you.
 - (c) Trace the outline of the slab and then remove it.
 - (d) Draw a line AB (B marked about 2cm from Q) making an angle of 60° with QT.
 - (e) Fix two pins P_1 and P_2 vertically on AB.
 - (f) Draw a line MN parallel to RS at a distance , X=1.0cm.
 - (g) Replace the slab and place mirror with its reflecting face facing RS on MN as shown below.

- (h) Looking through the face QT of the slab, fix two pins P₃ and P₄ so that they appear to be in line with the image of P₁ and P₂.
- (i) Remove the slab and the mirror and draw a line through P₃ and P₄ to meet QT at C.
- (j) Measure the length, y, of BC.
- (k) Repeat produces (f) and (j) for values of x= 1.5,2.0,2.5,3.0,3.5 and 4.0cm.
- (I) Tabulate your results including values of xy, and $I = 4x^2 + 3y^2$.
- (m)Plot a graph of I against xy.
- (n) Find the I-intercept, c, of the graph.
- (o) Measure thickness, **t**, of the slab.
- (p) Calculate the refractive index , ${\bf n},$ of the material of the slab from the

expression, $n = \sqrt{\left(\frac{3t^2}{c} + \frac{1}{4}\right)}$

© UTEB 2019 Joint Mock Examinations

NB: Hand in your tracing paper together with the rest of your work.

- In this experiment, you will determine the internal resistance of the dry cell provided. (30 marks)
 - (a) Connect the circuit shown in figure **3**.

Fig. 3

- (b) Close switch, K.
- (c) Read and record the voltmeter reading, E.
- (d) Disconnect the circuit and connect the circuit shown in figure 4, with $l_a = 1.00 \text{ m.}$

- (e) Starting with length, l = 0.100 m, close switch k.
- (f) Read and record the voltmeter reading V.
- (g) Open switch, K.
- (h) Repeat the procedures (e) to (g) for values of l = 0.200, 0.300, 0.400, 0.500, 0.600 and 0.700 m.
- (i) Record your results in a suitable table.
- (j) Plot a graph of V against l.
- (k) Find the slope, s, of the graph.
- (I) Calculate the internal resistance, r, of the cell from the expression

$$r=3.7\left(rac{E}{s}-l_o
ight)$$

© UTEB 2019 Joint Mock Examinations

© UTEB 2019 Joint Mock Examinations